Solve for the value of m
Answers
-2/5 or -.4
|5x+2|=0
5x+2=0
5x=-2
X=-2/5
[tex]2m-\frac { 1 }{ 2 } =\frac { m }{ 7 } +\frac { m }{ 2 } \\ \\ \frac { 1 }{ m } \left( 2m-\frac { 1 }{ 2 } \right) =\frac { 1 }{ m } \left( \frac { m }{ 7 } +\frac { m }{ 2 } \right)[/tex]
[tex]\\ \\ \frac { 2m }{ m } -\frac { 1 }{ 2m } =\frac { m }{ 7m } +\frac { m }{ 2m } \\ \\ 2-\frac { 1 }{ 2m } =\frac { 1 }{ 7 } +\frac { 1 }{ 2 } \\ \\ 2-\frac { 1 }{ 7 } -\frac { 1 }{ 2 } =\frac { 1 }{ 2m }[/tex]
[tex]\\ \\ \frac { 28 }{ 14 } -\frac { 2 }{ 14 } -\frac { 7 }{ 14 } =\frac { 1 }{ 2m } \\ \\ \frac { 19 }{ 14 } =\frac { 1 }{ 2m } \\ \\ { \left( 2m \right) }^{ -1 }={ \left( \frac { 14 }{ 19 } \right) }^{ -1 }[/tex]
[tex]\\ \\ 2m=\frac { 14 }{ 19 } \\ \\ \frac { 1 }{ 2 } \cdot 2m=\frac { 14 }{ 19 } \cdot \frac { 1 }{ 2 } \\ \\ m=\frac { 14 }{ 38 } =\frac { 7 }{ 19 }[/tex]
[tex]2m-\frac { 1 }{ 2 } =\frac { m }{ 7 } +\frac { m }{ 2 } \\ \\ \frac { 1 }{ m } \left( 2m-\frac { 1 }{ 2 } \right) =\frac { 1 }{ m } \left( \frac { m }{ 7 } +\frac { m }{ 2 } \right)[/tex]
[tex]\\ \\ \frac { 2m }{ m } -\frac { 1 }{ 2m } =\frac { m }{ 7m } +\frac { m }{ 2m } \\ \\ 2-\frac { 1 }{ 2m } =\frac { 1 }{ 7 } +\frac { 1 }{ 2 } \\ \\ 2-\frac { 1 }{ 7 } -\frac { 1 }{ 2 } =\frac { 1 }{ 2m }[/tex]
[tex]\\ \\ \frac { 28 }{ 14 } -\frac { 2 }{ 14 } -\frac { 7 }{ 14 } =\frac { 1 }{ 2m } \\ \\ \frac { 19 }{ 14 } =\frac { 1 }{ 2m } \\ \\ { \left( 2m \right) }^{ -1 }={ \left( \frac { 14 }{ 19 } \right) }^{ -1 }[/tex]
[tex]\\ \\ 2m=\frac { 14 }{ 19 } \\ \\ \frac { 1 }{ 2 } \cdot 2m=\frac { 14 }{ 19 } \cdot \frac { 1 }{ 2 } \\ \\ m=\frac { 14 }{ 38 } =\frac { 7 }{ 19 }[/tex]
There is no solution
Step-by-step explanation:
31/37=m/3
We move all terms to the left:
31/37-(m/3)=0
We add all the numbers together, and all the variables
-(+m/3)+31/37=0
We get rid of parentheses
-m/3+31/37=0
We calculate fractions
There is no solution for this equation
|5x+2|-3 = -3 the absolute value of -3=3
Step-by-step explanation:
There is no solution the answer is 0
m = 7
Step-by-step explanation:
The 3 given angles lie on a straight line, thus sum to 180° , then
8m - 4 + 90 + 5m + 3 = 180, that is
13m + 89 = 180 ( subtract 89 from both sides )
13m = 91 ( divide both sides by 13 )
m = 7