# Plot the graphs of the given equation y=0

## Answers

1. C

2. A

3. D

4. B

5. C

6. B

7. B

8. B

A)Predicted value = 103.5

B)Actual value = 102

C)So, these are not same

Step-by-step explanation:

The researcher used the line[tex]y = -0.1 x +110[/tex] to model the data.

A)When the researcher substituted the value of x = 65 into this equation, what is the resulting y value?

Substitute value x=65 in equation :

y = -0.1 x +110

y=-0.1(65)+110

y=103.5

Predicted value = 103.5

B)Based on the coordinates of the given data points, what is the actual actual vision score when x=65?

Use the given graph

When x = 65

y = 102

So, The actual actual vision score when x=65 is 102

C)When the researcher substituted x = 65 into the line of equation, is the resulting y value the predicted value or the exit value for the vision score of a 65-year-old? Use your results for parts a and b to answer this question.

Predicted value = 103.5

Actual value = 102

So, these are not same

Option A

Step-by-step explanation:

Given that Darius is studying the relationship between mathematics and art. He asks friends to each draw a "typical” rectangle. x the length, y the width are known.

xy

6.112

58.1

9.115.2

6.510.2

7.411.3

10.917.5

slope0.605311851

Intercept0.004221583

Hence regression equation would be

y = 0.605x +0.004

Option A is the right answer

Part 1. Option C

Part 2. Option A

Part 3. Option D

Part 4. Option B

Part 5. Option C

Part 6. Option B

Part 7. Option B

Part 8. Option B

Step-by-step explanation:

Part 1)

Let

H------> Henry's current age

J------> Justin's current age

we know that

[tex]H=10J[/tex] ------> equation A

[tex]H+6=4(J+6)[/tex] ------> equation B

the answer is the option C

Part 2)

we know that

The y-intercept is the value of y when the value of x is equal to zero

In the equation

[tex]3x=6-\frac{1}{3}y[/tex]

evaluate for [tex]x=0[/tex]

[tex]3(0)=6-\frac{1}{3}y[/tex]

[tex]6=\frac{1}{3}y[/tex]

[tex]y=18[/tex]

therefore

the equation [tex]3x=6-\frac{1}{3}y[/tex] is the solution

Part 3) we know that

The formula to calculate the midpoint is equal to

[tex]M(\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]

Find the x-coordinate of the ordered pair

[tex]1=(-2+x2)/2\\2=-2+x2\\x2=4[/tex]

Find the y-coordinate of the ordered pair

[tex]0=(3+y2)/2\\0=3+y2\\y2=-3[/tex]

the endpoint is [tex](4,-3)[/tex]

Part 4) we know that

In this problem the scale factor is equal to [tex]1\frac{1}{2}=1.5[/tex]

The perimeter on the photocopies is equal to the perimeter on a sheet of paper multiplied by the scale factor

so

[tex]60*1.5=90\ cm[/tex]

Part 5) we know that

The Triangle Inequality Theorem.states that the sum of the lengths of any two sides of a triangle is greater than the length of the third side

Let

c------> the length of the third side

[tex]6+9c[/tex] ------> [tex]15c[/tex] ------> [tex]c<15[/tex]

[tex]6+c9[/tex] -----> [tex]c3[/tex]

the answer is the option C [tex]13[/tex]

Part 6) we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]A(45,76)\\B(76,76)[/tex]

substitute the values

[tex]d=\sqrt{(76-76)^{2}+(76-45)^{2}}[/tex]

[tex]d=\sqrt{0^{2}+(31)^{2}}[/tex]

[tex]d=31\ units[/tex]

Part 7) we know that

Line graphs provide an excellent way to map independent and dependent variables that are both quantitative.

Scatter plots are similar to line graphs in that they start with mapping quantitative data points. The difference is that with a scatter plot, the decision is made that the individual points should not be connected directly together with a line but, instead express a trend.

The cans of drinks sold each day in the snack bar should be graphed using a scatter plot instead of a line graph

Part 8) we know that

If a ordered pair lies on the line

then

the ordered pair must be satisfy the equation of the line

Substitute the values of the ordered pair in the equation

[tex]2x+y=9[/tex] ------> [tex]2(5)+k=9[/tex] -----> [tex]k=9-10=-1[/tex]

The equation that Darius use to determine the length, in centimeters, of a "typical” rectangle for a given width in centimeters is y = 1.518x + 0.995. The answer is C.

Using excel to plot the data points and producing the trend line and the equation of the line. The equation darius can use to determine the length of a typical rectangle given the width is

Y = 1.518x + 0.995. check the attach screenshot of the excel file.

[tex]Darius is studying the relationship between mathematics and art. he asks friends to each draw a typ[/tex]

Thank you for posting your question here at I hope the answer will help you. Feel free to ask more questions.

The equation could Darius use to determine the length, in centimeters, of a "typical” rectangle for a given width in centimeters is y=1.518x+0.995

la parábola es el lugar

geométrico en el cual los puntos tienen una distancia idéntica, equidistantes,

de un punto denominado foco, f, y una recta denominada directriz

el radio vector de una

parábola es el segmento que existe entre un punto cualquiera y el foco.

por la ecuación se observa

que la parábola abre hacia la derecha, por lo cual podemos usar las siguientes fórmulas

la ecuación ordinaria de la

parábola es y^2 = 4px, donde p es la longitud desde el vértice de la parábola al

foco.

la fórmula de la directriz

es x + p = 0

resolviendo:

y^2-9x = 0

y^2 = 9x

4p = 9, entonces p = 9/4

entonces el foco tendrá la

coordenada f(9/4,0)

la directriz vendrá

expresada por

x + p = 0

x = -p

x = -9/4

el problema indica que la

ordenada es igual a 6, entonces

(6)^2=9x

x = 36/9

x = 4

entonces el punto al cual

hay que obtener la distancia será p(4,6)

calculando se tendrá: pf =

pf = 6,25 u

ver más en -

step-by-step explanation:

answer: 0.1,0.85

step-by-step explanation: