Find the value of y when x=3y=2x3y=0
Question:
y=2x3
y=0
[tex]Find the value of y when x=3 y=2x3 y=0[/tex]
Answers
54
Why? You need to put 3 in for x so you get
2(3)^3
3 to the third power is 3*3*3 which equals 27
2(27)
Now you must do 2 times 27 and you get 54
Hope this helps
1.a
2.c
3.b
4.784
5.part a: coefficient: 75 variable: d constant: 25
part b: 75d+8w+25=
75*5+8*48+25=
375+384+25=
759+25=
784
part c: the constant would change, because there is no variable attached to the number.
2x^3 + 3y^2 − 17
Plug the value of the x and y
2(3)^3+3(4)^2-17
3^3=27
4^2=16
=2(27)+3(16)-17
=54+48-17
=102-17
=85
2x³ + 3y² - 17
Subtitute the values x = 3 and y = 4 to the expression:
2 · 3³ + 3 · 4² - 17 = 2 · 27 + 3 · 16 - 17 = 54 + 48 - 17 = 102 - 17 = 85
2x³ + 3y² - 17 =
2*(3)³ + 3*(4)² - 17 =
2*27 + 3*16 - 17 =
54 + 48 - 17 =
85 ← Answer
2x³ + 3y² − 17 = 2*(3)³ + 3*(4)² - 17 = 2*27 + 3*16 - 17 = 54 + 48 - 17 = 85.
85
Step-by-step explanation:
2x^3 + 3y^2 − 17
2(3)^3 + 3(4)^2 − 17
2*27 + 3*16 -17
54 + 48 -17 = 85
85
Step-by-step explanation:
I assume by 2x3 you mean 2x^3 and 3y2 means 3y^2. If so then just plug in the values:
2x^3 + 3y^2 - 17 = ?
2(3)^3 + 3(4)^2 - 17 = ?
2(27) + 3(16) - 7 = ?
54 + 48 - 17
102 - 17 = ?
85 = ?
85
Step-by-step explanation:
Substitute x = 3 and y = 4 into the expression and evaluate, that is
2(3)³ + 3(4)² - 17
= 2(27) + 3(16) - 17
= 54 + 48 - 17
= 102 - 17
= 85
B. 85
Step-by-step explanation:
We have been given an expression [tex]2x^3+3y^2-17[/tex]. We are asked to find the value of expression, when [tex]x=3[/tex] and [tex]y=4[/tex].
To find the value of our given expression, we will substitute [tex]x=3[/tex] and [tex]y=4[/tex] in our expression as:
[tex]2(3)^3+3(4)^2-17[/tex]
[tex]2*27+3*16-17[/tex]
[tex]54+48-17[/tex]
[tex]102-17[/tex]
[tex]85[/tex]
Therefore, the value of expression at the given values would be 85.
What are the choices
no
step-by-step explanation: