# Determine algebraically whether the function is even, odd, or neither even nor odd. (2

###### Question:

## Answers

f(x) is neither odd nor even function

Step-by-step explanation:

we are given

[tex]f(x)=-3x^4-2x-5[/tex]

Firstly, we will find f(-x)

we can replace x as -x

we get

[tex]f(-x)=-3(-x)^4-2(-x)-5[/tex]

now, we can simplify it

[tex]f(-x)=-3x^4+2x-5[/tex]

we can see that

it is neither equal to f(x) nor -f(x)

we know that

For even:

[tex]f(-x)=f(x)[/tex]

For odd:

[tex]f(-x)=-f(x)[/tex]

so, f(x) is neither odd nor even function

The function f(x) is neither even nor odd.

Step-by-step explanation:

The given function is

[tex]f(x) = -3x^4 - 2x - 5[/tex]

A function is called an even function if

[tex]f(-x) = f(x)[/tex]

A function is called an odd function if

[tex]f(-x) = -f(x)[/tex]

Substitute x=-x in the given function, to check whether the function is even, odd, or neither even nor odd.

[tex]f(-x) = -3(-x)^4 - 2(-x) - 5[/tex]

[tex]f(-x) = -3(x)^4 + 2(x) - 5[/tex]

[tex]f(-x) \neq f(x)[/tex]

[tex]f(-x) \neq -f(x)[/tex]

Therefore the function f(x) is neither even nor odd.

idk

step-by-step explanation:

step-by-step explanation: