Aright triangle has side lengths ac = 7 inches, bc = 24 inches, and ab = 25 inches. what are the measures of the angles
Question:
what are the measures of the angles in triangle abc?
(a.) m∠a ≈ 46.2°, m∠b ≈ 43.8°, m∠c ≈ 90°
(b.) m∠a ≈ 73.0°, m∠b ≈ 17.0°, m∠c ≈ 90°
(c.) m∠a ≈ 73.7°, m∠b ≈ 16.3°, m∠c ≈ 90°
(d.) m∠a ≈ 74.4°, m∠b ≈ 15.6°, m∠c ≈ 90°
plz every time i try to do the problem my answer doesnt show up but i have no idea what im doing
its not d tho, i know that much
Answers
⁻⁻Using Sine ratio: opposite / Hypotenuse
Opposite to angle A = 24, Hypotenuse = 25
Sin A = 24 / 25
Sin A = 0.96
A = Sin⁻¹(0.96) Use a calculator.
A ≈73.74°
A ≈ 73.7°
∠A + ∠B = 90° Since it is a right angled triangle.
∠B = 90° - ∠A
∠B = 90° - 73.7°
∠B = 16.3°
(c.) m∠A ≈ 73.7°, m∠B ≈ 16.3°, m∠C = 90°
c.) m∠A ≈ 73.7°, m∠B ≈ 16.3°, m∠C ≈ 90°
Step-by-step explanation:
A right triangle has side lengths AC = 7 inches, BC = 24 inches, and AB = 25 inches.
What are the measures of the angles in triangle ABC?
a.) m∠A ≈ 46.2°, m∠B ≈ 43.8°, m∠C ≈ 90°
b.) m∠A ≈ 73.0°, m∠B ≈ 17.0°, m∠C ≈ 90°
c.) m∠A ≈ 73.7°, m∠B ≈ 16.3°, m∠C ≈ 90°
d.) m∠A ≈ 74.4°, m∠B ≈ 15.6°, m∠C ≈ 90°
(C)
Step-by-step explanation:
It is given that a right triangle, ACB which is right angled at C has BC = 24 inches, and AB = 25 inches.
We know that m∠C=90°,
Using the trigonometry in ΔACB, we have
[tex]sinB=\frac{AC}{AB}[/tex]
Substituting the given values, we get
⇒[tex]sinB=\frac{24}{25}[/tex]
⇒[tex]B=sin^{-1}(0.96)[/tex]
⇒[tex]B=73.7^{\circ}[/tex]
Also, [tex]sinA=\frac{CB}{AB}[/tex]
Substituting the given values, we get
⇒[tex]sinA=\frac{7}{25}[/tex]
⇒[tex]A=sin^{-1}(0.28)[/tex]
⇒[tex]A=16.3^{\circ}[/tex]
Therefore, the measure of the angles in triangle ABC are m∠A ≈ 73.7°, m∠B ≈ 16.3°, m∠C ≈ 90°.
Thus, option C is correct.
[tex]Aright triangle has side lengths ac = 7 inches, bc = 24 inches, and ab = 25 inches. what are the mea[/tex]
90, 74, 16 degrees
Step-by-step explanation:
Given that a right triangle has side lengths AC = 7 inches, BC = 24 inches, and AB = 25 inches.
We find that
AC square + BC square = AC square
[tex]7^2 +24^2 =625 = 25^2[/tex]
So angle C = 90 degrees.
sin A = 24/25
So A = 74 degrees and B = 16 degrees
C) m∠A ≈ 73.7°, m∠B ≈ 16.3°, m∠C ≈ 90°
C
Step-by-step explanation:
correct on edg2020
m∠C ≈ 90°m∠A ≈ 73.7°, m∠B ≈ 16.3°
Step-by-step explanation:
Given:
triangle ABC is right-angled triangle
let angle C= 90
using law of sines:
a/sinA=b/sinB
Putting the values:
25/sin90= 7/sinB
25/1=7/sinB
25sinB=7
sinB=7/25
sinB=0.28
B=sin^-1 (0.28)
B=16.3
As C= 90, B=16.3
A= 180-(90+16.3)
A=180-(106.3)
A=73.7 !
Angle C is 90 degrees
Angle B is 16
Angle A is 74
m∠A =73.7°
m∠B = 16.3°
m∠C = 90°
The measures should be
M∠A≈73.7°,M∠B≈≈16.3°,M∠C=90°