53Find the x of the angle
Answers
1. The given triangle ABC, has a right angle at C, BC=11, and [tex]B=30\degree[/tex]
[tex]\tan 30\degree=\frac{AC}{11}[/tex]
[tex]AC=11\tan 30\degree[/tex]
[tex]AC=\frac{11\sqrt{3}}{3}[/tex]
Ans: A
2. The reference angle is the angle the terminal side makes with x-axis.
[tex]-\frac{33\pi}{8}=-4\frac{\pi}{8}[/tex]
This implies that, [tex]-\frac{33\pi}{8}[/tex] has a reference angle of [tex]\frac{\pi}{8}[/tex].
Ans: C
3. Let x be the shortest distance the ramp can span.
From the diagram; [tex]\tan (4.76\degree)=\frac{2.5}{x}[/tex]
[tex]\implies x=\frac{2.5}{\tan (4.76\degree)}[/tex]
[tex]\implies x=30.0ft[/tex]
Ans:B
4. Use the Pythagorean identity: [tex]1+\tan ^2 \theta=\sec^2 \theta[/tex].
If [tex]\cot \theta=-\frac{1}{2}[/tex],then [tex]\tan \theta=-2[/tex]
[tex]\implies 1+2^2=\sec^2 \theta[/tex]
[tex]\implies \sec^2 \theta=5[/tex]
[tex]\implies \sec \theta=-\sqrt{5}[/tex], In QII, the secant ratio is negative.
Ans:C
5. We have [tex]\sin \frac{2\pi}{3}=\frac{\sqrt{3} }{2}[/tex]
[tex]\cos \frac{\pi}{6}=\frac{\sqrt{3} }{2}[/tex]
[tex]\cos \frac{\pi}{3}=\frac{1}{2}[/tex]
[tex]\sin \frac{5\pi}{3}=-\frac{\sqrt{3} }{2}[/tex]
[tex]\cos \frac{7\pi}{6}=-\frac{\sqrt{3} }{2}[/tex]
[tex]\cos \frac{11\pi}{6}=\frac{\sqrt{3} }{2}[/tex]
Ans:A and D
6. The given function that is equivalent to [tex]f(x)=\sin x[/tex] is [tex]f(x)=\cos (-x+\frac{\pi}{2})[/tex].
When we reflect the graph of [tex]f(x)=\cos (x)[/tex] in the y-axis and shift it to the left by [tex]\frac{\pi}{2}[/tex] units, it coincides with graph of [tex]f(x)=\sin x[/tex].
Ans:C
7. The function [tex]y=\tan x[/tex] is a one-to-one function on the interval [tex][-\frac{\pi}{2},\frac{\pi}{2}][/tex]
When we restrict the domain of [tex]y=\tan x[/tex] on [tex][-\frac{\pi}{2},\frac{\pi}{2}][/tex] it becomes an invertible function.
Ans: C
8. The given function is [tex]y=3\sin(4x-\pi)[/tex]
The horizontal shift is given by [tex]\frac{C}{B}=\frac{\pi}{4}[/tex]
The direction of the shift is to the right.
Ans:D
9. [tex]\cos(-75\degree)=\cos(75\degree)[/tex] by the symmetric property of even functions.
[tex]\cos(75\degree)=\cos(45\degree+30\degree)[/tex]
[tex]\cos(75\degree)=\cos(45\degree) \cos30\degree-\sin(45\degree) \sin30\degree[/tex]
[tex]\cos(75\degree)=\frac{\sqrt{2} }{2} \times \frac{\sqrt{3} }{2} -\frac{\sqrt{2} }{2} \times \frac{1}{2}[/tex]
[tex]\cos(75\degree)=\frac{\sqrt{6}-\sqrt{2}}{4}[/tex]
Ans: B
10. Recall the cosine rule: [tex]a^2=b^2+c^2-2bc\cos A[/tex]
Let the angle measure opposite to the longest side be A, then a=19,b=17, and c=15.
[tex]\Rightarrow 19^2=17^2+15^2-2(17)(15)\cos A[/tex]
[tex]\implies -153=-510\cos A[/tex]
[tex]\implies \cos A=0.3[/tex]
[tex]\implies A=\cos^{-1}(0.3)=73\degree[/tex]
Ans:B
11. We want to solve [tex]2\sin(2x)\cos(x)-\sin(2x)=0[/tex] on the interval;
[tex][-\frac{\pi}{2},\frac{\pi}{2}][/tex]
Factor: [tex]\sin2(x)[2\cos(x)-1)=0[/tex]
Either [tex]\sin(2x)=0 \implies x=0\frac{\pi}{2}[/tex]
Or [tex][2\cos x-1=0[/tex] This means that [tex]x=\frac{\pi}{3},-\frac{\pi}{3}[/tex]
Therefore required solution is [tex]x=-\frac{\pi}{3},0,\frac{\pi}{3},\frac{\pi}{2}[/tex]
Ans:D
12. Use the relation:[tex]r=\sqrt{x^2+y^2}[/tex] and [tex]\theta=\tan^{-1}(\frac{y}{x})=[/tex]
The given rectangular coordinate is (1,-2)
This implies that:[tex]r=\sqrt{1^2+(-2)^2}=\sqrt{5}[/tex]
[tex]\theta=\tan^{-1}(\frac{-2}{1})=[/tex] This means [tex]\theta=116.6[/tex] or [tex]\theta=296.6[/tex]
The polar forms are: [tex]-\sqrt{5},116.6[/tex] and [tex]\sqrt{5},296.6[/tex]
Ans: B and C
13. The polar equation that represents an ellipse is
[tex]r=\frac{2}{2-\sin \theta}[/tex].
When written in standard form; [tex]r=\frac{1}{1-0.5\sin \theta}[/tex].
The eccentricity is [tex]0.5\:[/tex].
Therefore the [tex]r=\frac{2}{2-\sin \theta}[/tex] is an ellipse.
Ans: B
14. The DeMoivre’s Theorem states that;
[tex](\cos \theta+i\sin \theta)^n=\cos n\theta+i\sin n\theta[/tex]
This implies that:
[tex][2(\cos \frac{\pi}{9}+i\sin \frac{\pi}{9})]^3=2^3\cos 3\times \frac{\pi}{9}+i\sin 3\times \frac{\pi}{9})[/tex]
[tex][2(\cos \frac{\pi}{9}+i\sin \frac{\pi}{9})]^3=8(frac{2}{2})+i8(\frac{\sqrt{3}}{2})=4+4\sqrt{3}i[/tex]
Ans: A
15. Let the initial point be (x,y), Then [tex]|v|=\sqrt{(-2-x)^2+(4-y)^2}[/tex].
If x=-8, and y=-4.
Then, [tex]|v|=\sqrt{(-2--8)^2+(4--4)^2}[/tex].
[tex]|v|=\sqrt{(-6)^2+(8)^2}=\sqrt{100}=10[/tex].
Ans: B
16. We find the dot product to see if it is zero.
[tex]u\bullet v=-6(7)+4(10)=-2[/tex]
Since the dot product is not zero the vectors are not orthogonal
[tex]\theta=\cos ^{-1}(\frac{u\bullet v}{|u||v|})[/tex]
[tex]\theta=\cos ^{-1}(-\frac{2}{2\sqrt{13}\times \sqrt{1149} }) =91.3\degree[/tex]
Ans:B
17. Given v=5i+4j, w=2i-3j.
u=v+w
Add corresponding components
This implies u=(5i+4j)+(2i-3j)
u=(5i+2i+4j-3j)
u=7i+j
Ans:B
See attachment.
[tex]1. in abc, c is a right angle and bc= 11. if the measure of angle b= 30degrees, find ac. a) (11sqrt3[/tex]
[tex]1. in abc, c is a right angle and bc= 11. if the measure of angle b= 30degrees, find ac. a) (11sqrt3[/tex]
a,c,d,a,b,a,a,c,b,
step-by-step explanation:
do this
1. The given triangle ABC, has a right angle at C, BC=11, and
Ans: A
2. The reference angle is the angle the terminal side makes with x-axis.
This implies that, has a reference angle of .
Ans: C
3. Let x be the shortest distance the ramp can span.
From the diagram;
Ans:B
4. Use the Pythagorean identity: .
If ,then
, In QII, the secant ratio is negative.
Ans:C
5. We have
Ans:A and D
6. The given function that is equivalent to is .
When we reflect the graph of in the y-axis and shift it to the left by units, it coincides with graph of .
Ans:C
7. The function is a one-to-one function on the interval
When we restrict the domain of on it becomes an invertible function.
Ans: C
8. The given function is
The horizontal shift is given by
The direction of the shift is to the right.
Ans:D
9. by the symmetric property of even functions.
Ans: B
10. Recall the cosine rule:
Let the angle measure opposite to the longest side be A, then a=19,b=17, and c=15.
Ans:B
11. We want to solve on the interval;
Factor:
Either
Or This means that
Therefore required solution is
Ans:D
12. Use the relation: and
The given rectangular coordinate is (1,-2)
This implies that:
This means or
The polar forms are: and
Ans: B and C
13. The polar equation that represents an ellipse is
.
When written in standard form; .
The eccentricity is .
Therefore the is an ellipse.
Ans: B
14. The DeMoivre’s Theorem states that;
This implies that:
Ans: A
15. Let the initial point be (x,y), Then .
If x=-8, and y=-4.
Then, .
.
Ans: B
16. We find the dot product to see if it is zero.
Since the dot product is not zero the vectors are not orthogonal
Ans:B
17. Given v=5i+4j, w=2i-3j.
u=v+w
Add corresponding components
This implies u=(5i+4j)+(2i-3j)
u=(5i+2i+4j-3j)
u=7i+j
Ans:B
See attachment.
Read more on -
Igot a c d a b a a c b
74 degrees
Hope this helps and have a great day :)
And please mark me brainliest if you can :)
74 degrees
Step-by-step explanation:
These two triangles are isosceles.
This means that the top angle of the left triangle is also 53 degrees.
All triangles have 180 degrees.
When we subtract 2(53) from 180 we get 74.
We can use this vertical angle to find out the angle left of x which is 74.
Since the second triangle is also isosceles, x is equal to 74 degrees.